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Abstract

Fractional calculus extends classical differential operators to non-integer orders, enabling the explicit modelling of memory and hereditary
effects that are often absent in ordinary differential equation (ODE) formulations. This study evaluated fractional-order models formulated
with the Caputo derivative against classical ODEs across four datasets: global population growth, enzyme kinetics, Indian rainfall, and
blood glucose regulation. The parameters were estimated using least-squares optimisation, and the performance was evaluated based
on the root mean square error (RMSE). In all cases, the fractional-order models achieved lower RMSE values, with improvements
ranging from substantial to modest, yet systematic. Importantly, only one additional parameter, the fractional order (�), was introduced,
preserving the model structure while enhancing accuracy. These results highlight fractional-order modelling as a flexible, interpretable,
and computationally feasible framework for modelling complex dynamical systems.
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1. Introduction

Fractional calculus has emerged as a rigorous mathematical
framework that extends the concepts of classical di�erentiation
and integration to arbitrary real or complex orders [1–3]. This
generalization enhances the modeling capacity of di�erential
equations by enabling system dynamics to be described not
only through instantaneous rates of change but also through
their historical evolution [3, 4]. Unlike local integer-order
derivatives, fractional derivatives capture memory and hereditary
e�ects [5]. Memory-dependent behavior is a de�ning feature of
many natural systems, including hydrological processes, climate
dynamics, and environmental series. In such contexts, the
in�uence of past states persists across extended temporal scales,
and conventional ordinary di�erential equation (ODE) models
often fail to capture the full complexity of the observed data [6, 7].
Fractional di�erential equations (FDEs) provide an enriched
modeling framework by introducing an additional degree of
freedom, the fractional order �. This regulates the strength of
the memory e�ects [4, 8]. This added �exibility frequently leads
to improved model �t and enhanced predictive accuracy [6, 7].
The origins of fractional calculus can be traced back to a well-
known correspondence dated 1695, in which L’Hopital asked
Leibniz about the meaning of the derivative of non-integer order,
speci�cally (� = 1

2
). Leibniz suggested that this apparently

paradoxical operator could produce meaningful results, a view

now regarded as the conceptual origin of fractional calculus, not
speci�cally fractional di�erentiation. Subsequent centuries saw
signi�cant e�orts to rigorously formalize derivatives of arbitrary
order. Notably, in 1730, Euler employed the identity

dn(xm)
dxn = m(m−1)...(m−n+1)xm−n = Γ(m + 1)

Γ(m − n + 1)
xm−n, (1)

which expresses integer-order di�erentiation in terms of the
gamma function. By extending this relation to non-integer values
of n, Euler derived the following explicit formula for the half-order
derivative:

d
1
2 x

dx
1
2

=
√

4x
� , (2)

This result provided an early rigorous demonstration that
fractional di�erentiation can be de�ned consistently via analytic
continuation of classical operators. Building upon this
foundational insight, experts have noted that the most in�uential
formulation was later introduced by Riemann, who based his
approach on Cauchy’s integral formula.

∫
a

t

ds1∫
a

s1
ds2...∫

a

sn−1
y(sn)dsn =

1
(n − 1)!

∫
a

t

(t − s)n−1y(s)ds,

(3)
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Riemann introduced the concept of a fractional integral of order
� > 0 for a function y ∶ [a, b] → ℝ, de�ned as

aI�t y(t) =
1

Γ(�)
∫

a

t

(t − s)�−1y(s)ds. (4)

Building on this formulation, fractional derivatives are de�ned
using a fractional integral operator. The Riemann-Liouville
fractional derivative of order � > 0 is expressed as

aD�
t y(t) = ( ddt )

n

aItn−�y(t) =
1

Γ(n − �)
( ddt )

n

∫
a

t

(t−s)n−�−1y(s)ds,

(5)
where n ∈ ℕ is chosen such that a ∈ (n − 1, n). These
de�nitions form the foundation of fractional operators, which
until the 20th century were studied primarily within pure
mathematics. Fractional calculus has become a signi�cant
tool across disciplines, including mathematics, mechanics
[9], engineering [10], viscoelasticity [11], and dynamical
systems [12]. By extending beyond integer-order derivatives,
fractional operators enable more accurate modeling of real-world
phenomena that exhibit memory and hereditary e�ects, such
as viscoelasticity. Although the Riemann-Liouville derivative
is historically important, it is often unsuitable for practical
applications. Consequently, alternative formulations, such as
the Caputo derivative, have been widely adopted owing to two
key advantages: the derivative of a constant vanishes, and initial
value problems depend only on integer-order derivatives. The
Caputo fractional derivative of a function y ∶ [a, b] → ℝ of order
� > 0 is de�ned as

C
aD�

t y(t) = aIn−�t yn(t) = 1
Γ(n − �)

∫
a

t

(t − s)n−�−1yn(s)ds, (6)

where n = [�] + 1. In the special case � ∈ (0, 1), this reduces to

C
aD�

t y(t) =
1

Γ(1 − �)
∫

a

t

(t − s)−�y′(s)ds. (7)

The fractional integral and fractional derivative act as inverse
operators in the following sense ([2]):

Lemma 1.1 Let � > 0 and n ∈ ℕ such that � ∈ (n − 1, n). If
y ∈ ACn[a, b], or y ∈ Cn[a, b], then

aI�t C
aD�

t y(t) = y(t) −
n−1∑

k=0

y(k)(a)
k! (t − a)k . (8)

This result shows that the Caputo fractional derivative recovers
the original function up to a polynomial correction, which is
determined by the initial conditions. In particular, the correction
term re�ects the contribution of the lower-order derivatives at
the initial point, thereby ensuring consistency with the classical
di�erential operators.
Ordinary derivatives can be recovered as limiting cases of the

Caputo fractional derivative when � → n ∈ ℕ. Speci�cally,

lim
�→n−

aCDt�y(t) = y(n)(t), lim
�→n+

aCDt�y(t) = y(n)(t) − y(n)(a).

As an illustrative example, consider y(t) = t1.5, t ≥ 0. For � ∈
(0, 1), the Caputo derivative is

C
0D�

t y(t) =
Γ(2.5)

Γ(2.5 − �)
t1.5−� . (9)

It follows that for � < 1.5, we have Γ(2.5)
Γ(2.5−�)

t1.5−� as an increasing

function of t. In particular, for � = 1.5 we have Γ(2.5)
Γ(1)

t1.5−1.5 ≈
1.32934. As � > 1.5, the derivative tends to zero. The behavior
for di�erent values of is illustrated in Figure 1. According to [13],

Figure 1. Caputo fractional derivatives of y(t) = t1.5 for orders � ∈
0.98, 1.0, 1.2, 1.5, 2.1. Lower derivative orders yield smoother curves with
reduced magnitudes, re�ecting memory e�ects absent in the classical case
� = 1.

we have the following result

Theorem 1.2 Suppose f ∶ [a, b] × ℝ → ℝ be continuous with
a < b. For each � > 0 let ys be a solution on [a, b] of the fractional
initial-value problem

C
aD�

t ys(t) = f(t, ys(t)), ys(a) = ya,

where C
aD�

t denotes the Caputo derivative of order �. Suppose the
pointwise limit

y∗(t) = lim
�→1±

y∗s (t)

exists for every t ∈ [a, b]. Then y∗ is a solution of the classical
Cauchy problem

y′(t) = f(t, y(t)), y(a) = ya.

Proof: Consider 0 < � < 1, applying the Riemann–Liouville
fractional integral operator aI�t to the fractional equation and
using the Lemma 1.1 yields the Volterra integral representation

ys(t) = ya +
1

Γ(�)
∫

t

a
(t − z)�−1f(z, ys(z)), dz, t ∈ [a, b].

(10)
For �xed t ∈ (a, b] de�ne

G�(t, z) =
(t − z)�−1
Γ(�)

f(z, ys(z)), z ∈ [a, t].

By hypothesis ys(z) → y∗(z) pointwise and continuity off implies
f(z, ys(z)) → f(z, y∗(z)) for each z. Moreover, for each �xed
z ∈ [a, t),

lim
�→1

(t − z)�−1
Γ(�)

= 1,

so G�(t, z) → f(z, y∗(z)) pointwise on [a, t] as � → 1. To pass the
limit under the integral sign produces an integrable dominant.
Since f is continuous on the compact set [a, b] × B, where B is a
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compact interval containing the values ys(z) for � near 1, there
existsM > 0 such that |f(z, ys(z))| ≤ M. The Gamma function
is continuous at 1 and Γ(1) = 1, hence for � in a neighborhood of
1 we have Γ(�) ≥ c > 0. Consequently,

|G�(t, z)| ≤
M
c (t − z)�−1 ≤ M

c (t − z)�−1

for some �xed � ∈ (0, 1) and all z ∈ [a, t]. The function (t −
z)�−1 is integrable on [a, t] since � − 1 > −1, so the Dominated
Convergence Theorem applies. Thus

lim
�→1

1
Γ(�)

∫
t

a
(t − z)�−1f(z, ys(z))dz = ∫

t

a
f(z, y∗(z))dz.

Passing to the limit in (10) yields the integral identity

[y∗(t) = ya +∫
t

a
f(z, y∗(z))dz for all t ∈ [a, b].

Di�erentiating with respect to t (the integrand is continuous)
gives y′(t) = f(t, y(t)) on (a, b], and evaluation at t = a gives
y(a) = ya. Therefore, y∗ solves the classical Cauchy problem, as
claimed.
Note that the same argument adapts to limits � → 1+ provided
the extra initial derivatives appearing in the Lemma are controlled
and converge; the core steps remain the Volterra representation
and dominated convergence.

Parameter estimation for both the classical ordinary di�erential
equation (ODE) model and the fractional-order model was
performed using numerical optimization routines available in
MATLAB. Speci�cally, the lsqcurvefit function was employed
to calibrate each model against the experimental data by
minimizing the least-squares error between the observed and
simulated outputs. Model performance was assessed using the
root-mean-square error (RMSE), de�ned for a dataset {yi}i=1…m
with corresponding model predictions {ui}i=1…m as

RMSE =

√
√√√ 1

m

m∑

i=1
(yi − ui)2.

This metric provides a robust quantitative measure of the
discrepancies between empirical observations and model
predictions. Across all computational experiments, the fractional-
order formulation consistently produced lower RMSE values
than the classical ODE model, thereby demonstrating superior
�delity in capturing the underlying system dynamics.

In this study, we investigated four distinct real-world datasets,
namelyworld population records, enzyme kineticsmeasurements,
long-term Indian rainfall data, and clinical blood glucose
observations, to assess the e�ectiveness of classical ODE models
and their fractional generalizations formulated with the Caputo
derivative. The aim was to determine whether incorporating
fractional-order dynamics, and thereby introducing memory
e�ects, leads to a more faithful representation of long-term
variability, smoother trajectories, and reduced �tting error. For
each dataset, we estimated the model parameters and the optimal
fractional order � and evaluated the performance using the
RMSE as a quantitative criterion. The overall objective is to
identify when fractional models provide clear improvements
over classical formulations and to highlight the versatility and
robustness of fractional calculus in modeling complex biological,
environmental, and population dynamics processes.

2. Population dynamics

2.1. ODE approach
There exist several attempts to describe the World Population
Growth ([14]). The simplest model is the following, known as the
Malthusian law of population growth, which is used to predict
populations under ideal conditions. Let N(t) be the number of
individuals in a population at time t, B and M the birth and
mortality rates, respectively, so that the net growth rate is given
by dN

dt = (B −M)N = rN, (11)

where r = B −M is the growth rate. Here, we assume that B and
M are constant, and thus r is also constant. The solution of this
di�erential equation is the function-

N(t) = N0ert , t ≥ 0, (12)

where N0 is the population at t = 0. Because of the solution (12),
this model is also known as the exponential growth model.

2.2. Fractional approach
Consider that the World Population Growth model is ruled by the
fractional di�erential equation

C
0D�

t N(t) = rN(t), t ≥ 0, � ∈ (0, 1). (13)

Observe that, taking the limit � → 1−, equation (13) converts
into equation (11), but if we consider � ∈ (1, 2) and take the limit
� → 1+, we obtain N′(t) − N′(0) = rN(t).

Using the result by [15], the solution of this fractional di�erential
equation is the function

N(t) = N0E�(rt�) (14)

where E�(⋅) is the one parameter Mittag-Le�er function

E� =
∞∑

k=0

tk
Γ(�k + 1)

, t ∈ ℝ.

Consider now function (14), with � ∈ (0, 2). Then, as a → 1±, we
recover the solution for the classical problem (12).

2.3. Numerical simulation
For the numerical simulation, we employed population data
provided by the United Nations Population Division (2013)
[16], covering the period from 1910 to 2010 and consisting
of 11 data points, with the initial value N0 = 1750.
The data were �rst plotted in a population-time framework.
Subsequently, the classical ordinary di�erential equation (ODE)
model approximation was superimposed on the same graph,
followed by the fractional-order model approximation (see Figure
2). It is important to note that, in the case of the ODE model,
the initial values were slightly adjusted to achieve a better
�t; retaining the original initial condition resulted in an even
poorer approximation. To quantitatively compare the predictive
performance of the two models, the root mean square error
(RMSE) was employed as an objective measure of goodness of �t.
The classical ODEmodel yielded an RMSE of 171.13, whereas the
fractional-ordermodel achieved amarkedly lowerRMSEof 110.81.
This substantial reduction in error indicates that the fractional-
order model more accurately captures the underlying population
dynamics and provides a superior �t to the observed data than
the integer-order ODE model.
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Figure 2. Population data from the United Nations (1910-2010) with
model approximations. The plot compares the observed population values
with the classical ordinary di�erential equation (ODE) model �t and the
fractional-order model �t.

3. Enzyme kinetics dynamics

3.1. Classical saturation linear model

To describe the temporal evolution of the measured signal in the
enzyme-reaction dataset reported in [17], we consider the classical
saturation (or �rst-order relaxation) model

dS
dt = r (K − S(t)), t > 0, (15)

where S(t) denotes the observed reaction signal at time t, r > 0 is
the kinetic relaxation rate, and K > 0 represents the asymptotic
saturation level reached by the system. Such models arise
naturally in biochemical kinetics when the observable quantity
approaches a stable equilibrium value through a linear �rst-order
process, typical of many enzyme-mediated reactions operating
under quasi steady-state or pseudo �rst-order conditions. The
dataset in [17], obtained for several acetoacetyl-CoA reductases,
displays this characteristic saturation trend, making (15) a
suitable descriptive model for �tting and parameter estimation.

Equation (15) is a linear �rst-order ordinary di�erential
equation. Rewriting it in the standard form,

dS
dt + rS = rK,

and the explicit solution is

S(t) = K + (S0 − K) e−rt , (16)

where, S0 is the initial value of reaction substrate. This solution
describes an exponential relaxation toward the saturation valueK,
with rate r, consistent with the behavior observed in the enzyme
reaction data of [17].

3.2. Fractional approach of Saturation linear model

We consider the fractional extension of the classical saturation
linear model. Its dynamics are described by the Caputo fractional
di�erential equation given by

C
0D�

t S(t) = r
(
K − S(t)

)
, t ≥ 0, � ∈ (0, 1), (17)

This equation incorporates long-memory e�ects through the
fractional order �. Now, the equation (17) can be rewritten as

C
0D�

t S(t) + rS(t) = rK. (18)

The solution of the corresponding homogeneous equation is

Sc(t) = C E�(−rt�) , (19)

where E�(⋅) denotes the one-parameter Mittag–Le�er function
E�(z) =

∑∞
k=0

zk

Γ(�k+1)
, z ∈ ℝ. Since the Caputo derivative of a

constant is zero, the particular solution of (18) is

Sp(t) = K. (20)

Thus, the general solution is

S(t) = K + C E�(−rt�) . (21)

Using the initial condition S(0) = S0 and E�(0) = 1, we obtain
C = S0−K. Therefore, the explicit solution of the fractional model
(17) is

S(t) = K + (S0 − K)E�(−rt�) , t ≥ 0, � ∈ (0, 1). (22)

Figure 3. Comparison of experimental enzyme kinetics data with model
approximations. The plot shows the original experimental observations,
the classical ordinary di�erential equation (ODE) model �t, and the
fractional-order ODE model �t. The fractional model demonstrates closer
agreement with the experimental data than the classical ODE model.

3.3. Numerical simulation

The enzyme kinetics data set (tspycdy2rm-1.zip) was obtained
from the experimental observations reported by [17]. Speci�cally,
the data utilized in this study is located at the path: tspycdy2rm-
1∖AcAcCoA reductases data set∖kinetic data∖kinetic parameters
estimations∖AARChimera3∖NADH.
The raw data were converted into Excel format for further

processing. Among the 24 available data sets, curve13was selected
and reduced from 451 observations to 25, while preserving the
overall kinetic pattern. To analyze the data, we employed both
a classical ordinary di�erential equation (ODE) model and its
fractional-order counterpart. The experimental data, together
with the ODE and fractional approximations, are presented in
Figure 3.
For quantitative comparison, the Root Mean Square Error

Applied Mathematical Biosystems 28



P.N. Das Comparative analysis of fractional-order and classical ODE models

(RMSE) was calculated for both models. The ODE model yielded
an RMSE of 0.523334, whereas the fractional model achieved
a lower RMSE of 0.300257. These results demonstrate that the
fractional-order model provides a superior �t to the experimental
data compared to the classical ODE approach.

4. Average rainfall in India

Long-term rainfall variability plays a crucial role in hydrological
forecasting, climate analyses, and agricultural planning. To
investigate the temporal evolution of average Indian rainfall
between 1901 and 2014, data were collected from the website
of [18]. We considered a data-driven di�erential equation model.
The observed rainfall pattern displays pronounced nonlinear
temporal variability, thereby motivating the incorporation of
polynomial forcing terms within both ordinary di�erential
equations and their fractional counterparts.

4.1. Modelling approach

We consider the �rst-order ODE

dW
dt = a1t4 + a2t3 + a3t2 + a4t + a5, (23)

where W(t) denotes rainfall intensity and a1, … , a5 are model
parameters. Integrating both sides of equation (23) yields

W(t) = a1
5 t

5 + a2
4 t

4 + a3
3 t

3 + a4
2 t

2 + a5t + C, (24)

where C is determined using the initial rainfall valueW(0).

The solution takes the form of a �fth-degree polynomial, allowing
the capture of complex nonlinear rainfall dynamics. The
model remains deterministic and smooth, o�ering a stable
analytical framework for long-term prediction. While higher-
order polynomial forcing enhances �exibility, it may also amplify
sensitivity to noise; hence, a balance between interpretability and
smoothness is essential.

4.2. Fractional Differential Model

To incorporate memory and hereditary e�ects inherent in climatic
systems, we generalize equation (23) using the Caputo fractional
derivative:

C
0D�

t W(t) = a1t4 + a2t3 + a3t2 + a4t + a5, 0 < � ≤ 1. (25)

The solution of equation (25) is obtained by applying fractional
integration:

W(t) = W(0) +
5∑

i=1

ai
Γ(� + 6 − i)

t�+5−i . (26)

Fractional models incorporate memory e�ects, enabling long-
term rainfall in�uences to persist across temporal scales. When
the formulation reduces to the classical ODE model, it ensures
consistency. Since the forcing is polynomial, the Mittag-Le�er
family is unnecessary, and fractional integration remains algebraic.
The fractional-order parameter governs smoothness and historical
dependence, thereby enhancing �exibility in the representation
of climatic datasets.

4.3. Numerical simulation

Parameter estimation was performed by calibrating the model
outputs against the observed monthly rainfall time series.
For the ordinary di�erential equation (ODE) model (23), a

Figure 4. Two dimensional parameter space anaysis with e versus other
sensitive parameters. The system shows oscillation in the red colored
regions and in green colored region system does not show any oscillations.

least-squares optimization was applied to the polynomial
solution, resulting in the parameter set (a1, a2, a3, a4, a5, a6) =
(0.0767, −2.5222, 30.4054, −156.0503, 263.9710, 147.8883),
which yielded the closest correspondence with the long-term
mean rainfall data. In the fractional-order formulation, the same
parameter set was retained, while the fractional order � was
treated as the free variable. The optimal �t occurs at � = 0.985,
indicating that the inclusion of a mild memory e�ect improves
the model’s descriptive power. Comparative plots of both model
approximations alongside the empirical data are presented in
Figure 4.
The accuracy of the �ts was evaluated using the root-mean-

square error (RMSE). The ODE model produced an RMSE of
7.6855, whereas the fractional model achieved a slightly lower
RMSE of 7.6036. Although the reduction in error is modest, the
fractional model exhibits a marginally improved performance,
consistent with the enhanced visual agreement observed in Figure
4.

5. Blood glucose levels

5.1. ODE approach
Following [19], we obtain a simple model to determine the
Blood glucose level, described by a two-dimensional system of
ordinary di�erential equations. Let S be the concentration of
glucose generated due to the consumption of food, and G be the
concentration of glucose in the blood. Then the problem can be
described by the following Cauchy system:

dS
dt = − pS,

dG
dt =c + pS − qG,

(27)

where, S(0) = S0 is the initial amount of glucose, G(0) = G0 is the
initial amount of blood glucose level. The constant denotes the
glucose input rate from cellular storage, while and are positive
constants representing, respectively, the glucose release rate from
food sources and the blood glucose degradation rate. Now the
solution of (27) is given by the following two functions

S(t) = S0e−pt , (28)
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and

G(t) = S0
p

q − p e
−pt + (G0 − S0

p
q − p − cq)e−qt + cq. (29)

From [19], a set of experimental data is obtained in order to
determine the arbitrary constants p and q, where time is in
minutes and the blood glucose level (BGL) in mg/dL.

5.2. Fractional approach

Now we show that, if we consider the problem modeled by a
system of fractional di�erential equations, we obtain a curve that
better �ts the experimental results. Let �, � ∈ (0, 1) and consider
the system of fractional di�erential equations

C
0D�

t S(t) = − pS,
C
0D

�
t G(t) =c + pS − qG.

(30)

Following Diethelm (2010) [15], the solution with respect to S is

S(t) = S0E�(−pt�). (31)

To determine G, it can be found as the solution of a fractional
di�erential linear equation

C
0D

�
t G(t) = c − qG(t) + pS0E�(−pt�). (32)

Similarly, we obtain the solution with respect to G, as G(t)

= G0E�(−qt�) + � ∫ t
0 {pS0E�(−p(t − s)�) + c}s�−1E′�(−qs

�)ds

= p�S0 ∫
t
0
∑∞

m=0
(−p)m(t−s)m�

Γ(m�+1)
s�−1 ∑∞

n=0
(n+1)(−q)nsn�

Γ(n�+�+1)
ds

+ c� ∫ t
0
∑∞

n=0
(n+1)(−q)nsn�

Γ(n�+�+1)
s�−1ds + G0

∑∞
k=0

(−q)k tk�

Γ(k�+1)

= p�S0
∑∞

m=0
∑∞

n=0
(n+1)(−p)m(−q)n

Γ(m�+1)Γ(n�+�+1)
∫ t
0 (t − s)m�sn�+�−1ds

+ c�∑∞
n=0

(n+1)(−q)n

Γ(n�+�+1)
∫ t
0 sn�+�−1ds + G0

∑∞
k=0

(−q)k tk�

Γ(k�+1)

= p�S0
∑∞

m=0
∑∞

n=0
(n+1)(−p)m(−q)n

Γ(m�+1)Γ(n�+�+1)
∫ t
0 (t − s)m�sn�+�−1ds

+ c∑∞
n=0

(−q)n

Γ(n�+�+1)
tn�+� + G0

∑∞
k=0

(−q)k

Γ(k�+1)
tk� . (33)

We remark that, as the expression inside the series is continuous
and uniformly convergent, the previous calculations are valid. Let
us re-write function B(⋅) using the Beta function, as follows

B(a, b) = ∫
1

0
ta−1(1 − t)b−1dt, wherea, b > 0, (34)

with the following property

B(a, b) = Γ(a)Γ(b)
Γ(a + b)

,

and doing the change of variables u = s
t
, we obtain

∫
t

0
(t − s)m�sn�+�−1ds = tm�+n�+�∫

t

0
(1 − u)m�un�+�−1du

= tm�+n�+�B(n� + �,m� + 1)

= tm�+n�+� Γ(n� + �)Γ(m� + 1)
Γ(n� + � +m� + 1)

. (35)

Hence, using (35) into (33) we obtain

G(t) = G0

∞∑

k=0

(−q)k

Γ(k� + 1)
tk� + c

∞∑

n=0

(−q)n

Γ(n� + � + 1)
tn�+�

+pS0
∞∑

m=0

∞∑

n=0

(−k1)m(−k2)n
Γ(n� + � +m� + 1)

tm�+n�+� . (36)

Figure 5. Comparison of experimental blood glucose data reported
by [19] with model simulations. The �gure illustrates the measured
glucose concentrations alongside the �tted classical ODE solution and the
fractional-order model solution (� = 0.99), both obtained using the same
parameter set.

5.3. Numerical simulation
Using the experimental blood glucose dataset reported by [19],
model parameters were estimated by minimizing the mean
absolute error between measured glucose concentrations and
simulated outputs. For the classical ordinary di�erential equation
(ODE) formulation, the optimal parameter set was identi�ed
as p = 0.01, q = 0.0305, and c = 2.42. The resulting ODE-
based glucose trajectory is presented in Figure 5 alongside the
experimental observations.
Subsequently, these parameter values were applied to the

fractional-order formulation of the model, with the fractional
derivative order �xed at � = 0.99. The numerical solution of
the fractional-order system was computed and superimposed
on the same �gure, enabling direct comparison with both the
experimental data and the classical ODE approximation.
To quantitatively evaluate model performance, the root mean

square error (RMSE) was calculated using the experimental data
as reference. The classical ODE model yielded an RMSE of
1.9145 mg/dL, whereas the fractional-order model achieved a
slightly lower RMSE of 1.8912 mg/dL. Although the improvement
is modest, the consistent reduction in error demonstrates
that the fractional-order formulation provides a more accurate
representation of glucose dynamics compared to the integer-order
ODE model.

6. Conclusions

In this study, we conducted a comparative analysis of classical
integer-order ordinary di�erential equation (ODE) models and
their fractional-order counterparts. We examined diverse
real-world case studies, including global population growth,
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enzyme kinetics, rainfall dynamics, and blood glucose regulation.
These examples span multiple domains and data characteristics,
providing a robust framework for assessing the bene�ts of
fractional-order modeling.

Across all cases, fractional-order models consistently achieved
lower root mean square error (RMSE) values than classical
ODE formulations. In population dynamics, the fractional
model substantially improved the �t to United Nations data,
re�ecting its ability to capture long-term memory e�ects inherent
in demographic evolution. For enzyme kinetics, the fractional
approach yielded markedly superior agreement, highlighting the
role of memory-dependent dynamics in biochemical processes.
In rainfall modeling, although the reduction in RMSE was
modest, the fractional formulation yielded improved descriptive
accuracy, indicating that even weak memory e�ects can enhance
the representation of climatological time series. A comparable
trend emerged in blood glucose regulation, where the fractional-
order model consistently achieved lower RMSE under identical
parameter sets.
Importantly, the fractional formulation required only one

additional parameter-the fractional order (�)-while preserving the
structural form and parameterization of the classical models. This
minimal increase in complexity produced measurable gains in
accuracy and improved qualitative agreement with experimental
data.
Overall, the �ndings indicate that fractional-order models

constitute a natural extension of classical ODEs, seamlessly
incorporating memory and hereditary e�ects. They o�er a
�exible and interpretable framework for analyzing dynamical
systems, while remaining computationally e�cient and delivering
improved predictive performance.
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